LABORATORIUM PODSTAW ELEKTRONIKI I ENERGOELEKTRONIKI

INSTRUKCJA DO ĆWICZENIA NR 6

Układy przekształtnikowe o komutacji wymuszonej Przekształtniki DC-DC Modulacja PWM

KATEDRA ELEKTRONIKI WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI POLITECHNIKA LUBELSKA

WPROWADZENIE

Celem ćwiczenia jest zapoznanie się z przerywaczem prądu stałego z modulacją szerokości impulsów (PWM) umożliwiającym płynną regulację napięcia stałego od wartości 0 do maksymalnej oraz zmianę zwrotu napięcia i kierunku przepływu prądu i energii.

ZAKRES ĆWICZENIA

Praca jedno- i dwukwadrantowa przekształtnika DC/DC z obciążeniem R i RL:

- 1. obserwacja przebiegów czasowych napięć i prądu w charakterystycznych punktach układu przy różnych wartościach współczynnika sterowania i tgφ;
- 2. wyznaczenie charakterystyki sterowania przerywacza;
- 3. porównanie pracy układu przy różnych częstotliwościach impulsowania.

PRZEBIEG ĆWICZENIA

Przed przystąpieniem do wykonania ćwiczenia bezwzględnie należy zapoznać się z niniejszą instrukcją, a zwłaszcza z częścią "Postępowanie przy sterowaniu za pomocą komputera".

Należy pamiętać, że zawsze trzeba włączać najpierw zasilacz układu sterowania, układ sterowania (przełącznik w pozycji *RUN*), a dopiero później źródło napięcia stałego - przełącznik w pozycję *1*). Wyłączanie należy przeprowadzać w kolejności odwrotnej

i dla wartości współczynnika sterowania k takiej jak na początku pomiarów.

1. Praca jednokwadrantowa.

- a) Połączyć układ pomiarowy zgodnie ze schematem przedstawionym na rys. 1. Obciążenie stanowi szeregowe połączenie rezystancji i indukcyjności.
- b) Dokonać ustawień parametrów programu zgodnie z informacjami zawartymi w części instrukcji "Postępowanie przy sterowaniu za pomocą komputera".
- 1.1. Charakterystyka sterowania.

Wyznaczyć charakterystyki napięć na obciążeniu U_{sr} i U_{sk} w funkcji współczynnika sterowania k dla następujących przypadków:

a) R=810Ω, L=0H, f=112Hz,

- b) R=810Ω, L=0H, f=1800Hz,
- c) R=810Ω, L=1,2H, f=112Hz,
- d) R=810Ω, L=1,2H, f=1800Hz.

1.2. Przebiegi prądu i napięcia.

Zaobserwować i zarejestrować przebiegi napięć na obciążeniu $\mathbf{u}_0(\mathbf{t})$ i kluczu $\mathbf{u}_k(\mathbf{t})$ oraz prądu obciążenia $\mathbf{i}_0(\mathbf{t})$ dla kilku różnych wartości współczynnika k (zwłaszcza dla k=0,25; 0,5; 0,75) i przypadków jak w punkcie 1.1.

2. Praca dwukwadrantowa.

a) Połączyć układ pomiarowy zgodnie ze schematem przedstawionym na rys. 2. Obciążenie stanowi szeregowe połączenie rezystancji i indukcyjności.

b) Dokonać ustawień parametrów programu zgodnie z informacjami zawartymi w części instrukcji "Postępowanie przy sterowaniu za pomocą komputera".

2.1. Charakterystyka sterowania.

Wyznaczyć charakterystyki napięć na obciążeniu U_{sr} i U_{sk} w funkcji współczynnika sterowania k dla następujących przypadków:

- a) R=810Ω, L=0H, f=112Hz,
- b) R=810Ω, L=0H, f=1800Hz,
- c) R=810Ω, L=1,2H, f=112Hz,
- d) R=810Ω, L=1,2H, f=1800Hz.

Należy pamiętać by charakterystykę przeprowadzać od punktu k=0,5 w górę (do k=1), a następne od k=0,5 w dół (do k=0).

2.2. Przebiegi prądu i napięcia.

Zaobserwować i zarejestrować przebiegi napięć na obciążeniu $\mathbf{u}_0(t)$ i kluczach V1 i V2 $\mathbf{u}_{k1}(t)$ i $\mathbf{u}_{k2}(t)$ oraz prądu obciążenia $\mathbf{i}_0(t)$ dla kilku różnych wartości współczynnika k (zwłaszcza dla k=0,25; 0,5; 0,75) i przypadków jak w punkcie 2.1.

Należy pamiętać by obserwację przeprowadzać od punktu k=0,5 w górę (do k=1), a następne od tego punktu w dół (do k=0).

SCHEMATY ANALIZOWANYCH UKŁADÓW

Pełne układy połączeń zamieszczono na końcu instrukcji.

OPRACOWANIE SPRAWOZDANIA

W sprawozdaniu należy zamieścić:

- 1. obserwowane przebiegi czasowe wraz z ich interpretacją;
- 2. wyznaczone charakterystyki sterowania;
- 3. wnioski z przeprowadzonych pomiarów i obserwacji.

PROPONOWANE TABELE POMIAROWE

	podpunkt: a		b		с		d		
Lp.	k	U _{śr}	U _{śr}	U _{sk}	U _{sk}	U _{śr}	U _{sk}	U _{śr}	U _{sk}
_	%	V	V	V	V	V	V	V	V
1									
2									
n									

POSTĘPOWANIE PRZY STEROWANIU ZA POMOCĄ KOMPUTERA

- 1) Uruchomić komputer (anulować ewentualne żądanie hasła).
- 2) Włączyć zasilanie układu sterującego (przełącznik RUN/STOP w położeniu STOP).
- 3) Przełącznik MODE ustawić w położeniu RS 232 (na wyświetlaczu musi pokazać się napis PC).
- 4) Potencjometr zadający wartość współczynnika wypełnienie ustawić w położeniu:
 - dla punktu 1 **0%**
 - dla punktu 2 **0,5** (**50%**).
- 5) Z menu START wybrać PROGRAMY, następnie LUCAS i PWM-TRAIN.

UWAGA: Jeśli pojawi się komunikat o niegotowości połączenia (The interface on the serial ports is not ready. Run program in simulation mode?) należy sprawdzić połączenie komputera z układem sterującym a następnie wcisnąć NO. Jeśli to nie pomoże - zgłosić usterkę prowadzącemu.

6) Przełącznik RUN/STOP ustawić w położeniu RUN.

7) Ustawić następujące parametry w menu SETTINGS:

podmenu	zakładka	parametr	ustawienie		
Settings	Settings	Duty cycle/%	0 - w pkt. 1		
			50 - w pkt. 2		
		Frequency	High (1800Hz)		
			lub Low (112Hz)		
		Mode	Single-quadrant operation - w pkt. 1		
			Four-quadrant operation - w pkt. 2		
	Ranges	pozostawić wartości domyślne			
	Load circuit	Type of load	RL-load		
		Resistance/Ohm:	niaktywne		
		Automatically adjust	zaznaczyć		
		load display			
Calibrate	Calibrate	wszystkie pozostawić domyślne			
	Offset	wszystkie pozostawić domyślne			

8) Włączanie lub wyłączanie sterowania następuje poprzez:

- a) wybranie z menu SETTINGS Swich on the control unit F5 lub
- b) wciśnięcie klawisza F5 albo

c) wciśniecie przycisku

<u>UWAGA</u>: W przypadku "zawieszenia" się systemu należy niezwłocznie wyłączyć zasilanie przekształtnika (przełącznik 0/I w pozycję 0) oraz układ sterowania przełącznikiem RUN/STOP (bez względu na aktualną wartość współczynnika wypełnienia). Następnie "odwiesić" system powszechnie znanymi sposobami.

PASEK NARZĘDZIOWY (TOOLBAR)

	Nowy
	Otwórz
	Zapisz
4	Drukuj
75	ustawienie wypełnienia
EXT	włączenie/wyłączenie zewnętrznego sterowania
(zmiana kierunku wirowania
	włączenie/wyłączenie sterowania
+	przemieszczanie linii markera do poprzedniego punktu przełączenia
→	przemieszczanie linii markera do następnego punktu przełączenia

DILD	NT	, · ·		
FILE	Inew	nowe ustawienia		
	Open	otwiera zapisane ustawienia		
	Save	zapisuje aktualne ustawienia		
	Save As			
	Summary info	wprowadzenie dodatkowych informacji przed		
		zapisem		
	Print Option	ustawienia wydruku		
	Page Layout	ustawienia strony do wydruku		
	Page Preview	podgląd wydruku		
	Print	Wydruk		
	Export	eksportowanie wyników pomiarów (przebiegów		
		czasowych, wartości, schematu) do schowka		
		(clipboard) bądź pliku (file)		
	Send Mail	wysłanie pocztą elektroniczną pliku z ustawieniami		
	1. [scieżka\nazwa pliku]	ostatnio używane symulacje i ustawienia		
	Exit	wyjście z programu		
SETTING	Switch on the control unit F5	start/stop sterowania		
	External control	włączenie/wyłączenie sterowania zewnętrznego		
		(potencjometrem na pulpicie sterującym)		
	Settings	ustawienia: trybu pracy (settings), zakresu		
		mierzonych napięć i prądów (ranges), typu		
		obciążenia (load circuit)		
	Calibrate	Kalibracja		

Menu

VIEW	Current signal	zmiana prezentacji obserwowanych przebiegów		
	Load voltage			
	Split	zmiana szerokości okna z przebiegami czasowymi		
		(kosztem okna ze schematem układu)		
	Show values	wybór wielkości do pomiaru		
	Toolbar	włączenie/wyłączenie paska narzędziowego		
	Side Bar	włączenie/wyłączenie okna z wynikami pomiarów		
	Status Bar	włączenie/wyłączenie okna statusu		
CHART	Properties	ustawienia przebiegów czasowych: obciążenia		
		(load) oraz impulsów bramkujących (trigger)		
	X-Axis	ustawienie liczby pokazywanych okresów		
EXERCISES	First steps	symulacja pracy czterokwadrantowej		
	Single-quadrant operation	symulacja pracy jednokwadrantowej		
	Motor without L	symulacja pracy przy obciążeniu silnikiem		
	Motor with L	symulacja pracy przy obciążeniu silnikiem		
		oraz indukcyjnością		
	RL – load	symulacja pracy przy obciążeniu typu RL		
	Two-quadrant operation	symulacja pracy dwukwadrantowej		
	Properties	ustawienia symulacji		
HELP	Help Topics	pomoc (spis treści, index, znajdź)		
	About	informacje o programie PWM-TRAIN		

Program umożliwia także symulację kilku stanów pracy przekształtnika. Są one dostępne w menu **EXERCISES**. Umożliwia on analizę działania kluczy, przepływu prądu i energii zarówno dla przypadków badanych w ćwiczeniu, jak i przy pracy czterokwadrantowej z obciążeniem w postaci silnika prądu stałego.

STEROWANIE BEZ POMOCY KOMPUTERA

Możliwe jest sterowanie pracą układu bez pomocy komputera. Przejście do takiego sposobu sterowania odbywa się poprzez ustawienie przełącznika **MODE** w pozycję LF (praca przy częstotliwości f=112Hz) lub HF (praca przy częstotliwości f=1800Hz). Należy przy tym pamiętać, by podczas manipulowania przełącznikiem **MODE** przełącznik **RUN/STOP** był ustawiony w położeniu **STOP**. Pracę układu jednokwadrantową (pkt. 1.1. i 1.2.) zawsze należy zaczynać dla **k=0**, a dwukwadrantową (pkt. 2.1. i 2.2.) dla **k=0,5**. Pracę rozpoczyna się z chwilą przełączenia wyłącznika **RUN/STOP** w pozycję **RUN**.

8

OSCYLOSKOP

RYSUNEK 2. Układ do pracy dwukwadrantowej.

9